МатБюро Статьи по теории вероятностей Как найти математическое ожидание?

Как найти математическое ожидание?

Математическое ожидание случайной величины $X$ (обозначается $M(X)$ или реже $E(X)$) характеризует среднее значение случайной величины (дискретной или непрерывной). Мат. ожидание - это первый начальный момент заданной СВ.

Математическое ожидание относят к так называемым характеристикам положения распределения (к которым также принадлежат мода и медиана). Эта характеристика описывает некое усредненное положение случайной величины на числовой оси. Скажем, если матожидание случайной величины - срока службы лампы, равно 100 часов, то считается, что значения срока службы сосредоточены (с обеих сторон) от этого значения (с тем или иным разбросом, о котором уже говорит дисперсия).


Нужна помощь? Решаем теорию вероятностей на отлично
Понравилось? Добавьте в закладки

Формула среднего случайной величины

Математическое ожидание дискретной случайной величины Х вычисляется как сумма произведений значений $x_i$ , которые принимает СВ Х, на соответствующие вероятности $p_i$: $$ M(X)=\sum_{i=1}^{n}{x_i \cdot p_i}. $$ Для непрерывной случайной величины (заданной плотностью вероятностей $f(x)$), формула вычисления математического ожидания Х выглядит следующим образом: $$ M(X)=\int_{-\infty}^{+\infty} f(x) \cdot x dx. $$

Пример нахождения математического ожидания

Рассмотрим простые примеры, показывающие как найти M(X) по формулам, введеным выше.

Пример 1. Вычислить математическое ожидание дискретной случайной величины Х, заданной рядом: $$ x_i \quad -1 \quad 2 \quad 5 \quad 10 \quad 20 \\ p_i \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.3 \quad 0.1 $$

Используем формулу для м.о. дискретной случайной величины: $$ M(X)=\sum_{i=1}^{n}{x_i \cdot p_i}. $$ Получаем: $$ M(X)=\sum_{i=1}^{n}{x_i \cdot p_i} =-1\cdot 0.1 + 2 \cdot 0.2 +5\cdot 0.3 +10\cdot 0.3+20\cdot 0.1=6.8. $$ Вот в этом примере 2 описано также нахождение дисперсии Х.

Пример 2. Найти математическое ожидание для величины Х, распределенной непрерывно с плотностью $f(x)=12(x^2-x^3)$ при $x \in(0,1)$ и $f(x)=0$ в остальных точках.

Используем для нахождения мат. ожидания формулу: $$ M(X)=\int_{-\infty}^{+\infty} f(x) \cdot x dx. $$ Подставляем из условия плотность вероятности и вычисляем значение интеграла: $$ M(X)=\int_{-\infty}^{+\infty} f(x) \cdot x dx = \int_{0}^{1} 12(x^2-x^3) \cdot x dx = \int_{0}^{1} 12(x^3-x^4) dx = \\ =\left.(3x^4-\frac{12}{5}x^5) \right|_0^1=3-\frac{12}{5} = \frac{3}{5}=0.6. $$

Другие задачи с решениями по ТВ


Подробно решим ваши задачи по теории вероятностей

Вычисление математического ожидания онлайн

Как найти математическое ожидание онлайн для произвольной дискретной случайной величины? Используйте калькулятор ниже.

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
  • Нажмите на кнопку "Вычислить".
  • Калькулятор покажет вычисленное математическое ожидание $M(X)$.

Видео. Полезные ссылки

Видеоролики: что такое среднее (математическое ожидание)

Если вам нужно более подробное объяснение того, что такое мат.ожидание, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).

Понравилось? Добавьте в закладки


Полезные ссылки

А теперь узнайте о том, как находить дисперсию или проверьте онлайн-калькулятор для вычисления математического ожидания, дисперсии и среднего квадратического отклонения дискретной случайной величины.

Что еще может пригодиться? Например, для изучения основ теории вероятностей - онлайн учебник по терверу. Для закрепления материала - еще примеры решений по теории вероятностей.


А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро: